Environmental impacts of water optimization strategies developed within SPOTVIEW

Elorri Igos, Luxembourg Institute of Science and Technology (LIST) **Final web-conference** 26th March 2020

Horizon 2020 European Union Funding for Research & Innovation

 Decision process to implement water use optimization strategy at industrial scale

What about environmental considerations?

Mineral resources depletion

Assembly

turing

LCA of SPOTVIEW strategies Goal and scope

- Apply LCA to support the development of SPOTVIEW strategies (hotspots, best scenarios, trade-offs)
- Scope of the study
 - Operation of production processes (focus on water management)
 - Reference flow: the production of 1 ton (X ton /year) of product
 - Foreground: industry data (2016-2020) + simulations

LCA of SPOTVIEW strategies Goal and scope

- Apply LCA to support the development of SPOTVIEW strategies (hotspots, best scenarios, trade-offs)
- Scope of the study
 - Operation of production processes (focus on water management)
 - Reference flow: the production of 1 ton (X ton /year) of product
 - Foreground: industry data (2016-2020) + simulations
 - Background: ecoinvent (v3.5) database

LCA of SPOTVIEW strategies Life cycle impact assessment (LCIA)

Evaluation of environmental impacts following EC recommendations (Fazio et al. 2018) 1000

6

Spot **View**

orizon 2020 European Union Fun for Research & Innoval

Methane

fraction of species

- 00

Application to ESSITY case Scenarios

- Case 0: baseline scenario for tissue paper production at ESSITY in Finland (2017 data)
- Case 1: cut unnecessary freshwater addition (reuse of dust washers and Nash water, DIP white water system improvements...), completed in 2018
- Case 2: cross-rotational filtration (CR-filter) unit to reuse PM showers water, implemented in 2018
- Case 3: 3 CR-filters for the maximal reuse of PM showers water (simulation)

Case 4: Recycling of bio-treated effluent for PM showers (simulation)

Application to ESSITY case Results

	Case 0	Case 1	Case 2	Case 3	Case 4	Total Case 1+3+4
Freshwater intake	42.7 m ³ /t	-22%	-3%	-9%	-22%	-54%
Water losses	2.5 m ³ /t	=	=	=	=	=
Heating		-13%	-2%	-6%	-10%	-29%
Additional inputs			Electricity, detergents, membrane			
Carbon footprint		-10%	-1%	-4%	-7%	-21%
Water scarcity		=	=	=	=	=
P-eutrophication		=	=	=	=	=
N-eutrophication		-2%	=	-1%	-1%	-4%
FW ecotoxicity		=	=	=	=	=

- Significant decrease of the carbon footprint thanks to the energy savings for freshwater heating → maximum reduction of 12.5 kT CO₂-eq./yr
- Small effects on water footprint (equal water losses, limited impacts of heating use on the related indicators)

Main LCA findings for SPOTVIEW Scenarios impact

- Significant impacts decrease (> 20%)
 - Combination of optimized scenarios for tissue paper (carbon footprint only, minimal effects on other categories)
 - Replacement of river water by sea water for steel production (water scarcity only, significant increase on other categories)
 - Recovery of milk compounds via submerged ultrafiltration
- Minimal effects for other strategies
- How to further improve the environmental performances of the developed strategies?
 - Reduce water losses
 - Reduce energy use
 - Explore the recovery of valuable substances

Main LCA findings for SPOTVIEW Limitations of the evaluation

- Reliability of performances data used:
 - Real operational data vs. simulations
 - Process / environmental conditions variability
 - Limited coverage of the consequences of strategies
- LCA methodology
 - Water footprint methods do not consider the dependency on freshwater availability
 - Representativeness of background processes and LCIA methods

- Life cycle assessment (LCA) should be further included in the early-phase of technology development to identify the main environmental drivers and anticipate trade-offs
- LCA was successfully applied to 15 SPOTVIEW strategies and compared to the reference scenario for each sector
- Significant reductions of impacts were observed for 3 strategies, including one with a major trade-off between impact categories
- The developed strategies should further reduce water losses, energy use and recover valuable compounds to improve their environmental performances
- These outcomes should be interpreted carefully due to the limitations of the evaluation

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723577