Final web conference: "Holistic approaches for water and resources efficiency in process industry"

New strategies for effluent reuse in packaging paper industry

25th March, 2020

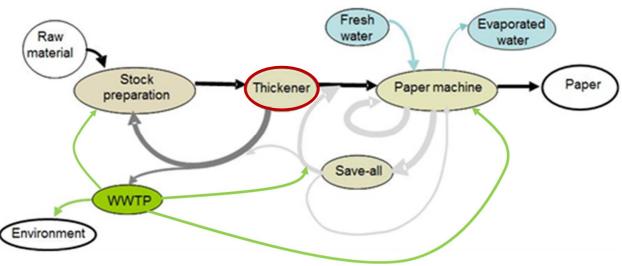
Stéphanie PRASSE, Patrick HUBER, Eric FOUREST, Jérôme LEMERCIER, Catherine DESCHAMPS, (**CTP**) Serge ANDRES (SAICA)

Effluent reuse for fresh water reduction

- · Water circuits closure is still a hot topic due to
 - environmental and regulatory constraints and
 - simultaneously Industry self commitment to further progress in sustainable papermaking processes
- Reducing fresh water volume has environmental and techno-economical advantages:
 - Reduction of natural resources needs, energy consumption, effluent flow,
 - Fresh water and effluent treatment cost reduction,
- But...

Fresh water reduction consequences

- Process water load increases:
 - Suspended fine solids not retained in paper web,
 - Organic and colloidal substances (released by raw material or produced by bacterial activity)
 - Salts build up (from raw material, chemicals, fresh water)
- Decrease in fiber bonding ability (zeta potential is crushed)
- Temperature increase up a point this is beneficial
- Oxygen content decrease,
- Volatile fatty acids increase and H₂ builds up due to bacteria fermentation (anaerobic conditions)
 - pH \(\Delta\)
 - flammable explosive biogas ∅


SpotView Presentation/ Bruxelles / CTP/ 25 March, 2020

2

Water management

- Strategies to control COD build-up
 - ⇒ Water loop separation principle combined to counter-current circulation of process waters: BAT
 - ⇒Effluent reuse after biological treatment: Kidney

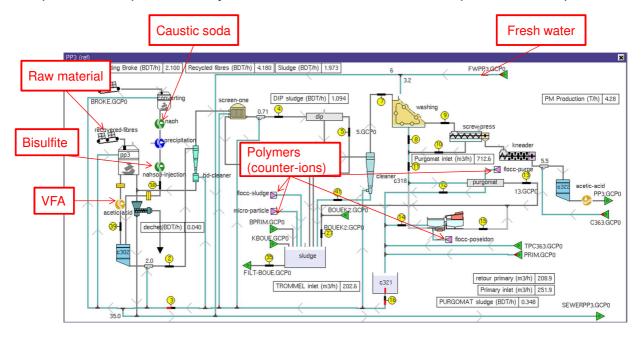
Water management

- Thanks to efficient water management (BAT), detrimental effects due to organic matters can be well controlled nowadays but mineral salts still build up.
- Consequences of salinity increase:
 - Additives become ineffective (retention agents, wet-ends additives, flocculants)
 - Weak fibre bonding
 - Scaling, deposits, corrosion
- What is the main source of conductivity?
 - Raw material ?
 - Fresh water ?
 - Additives?
 - Effluent reuse?

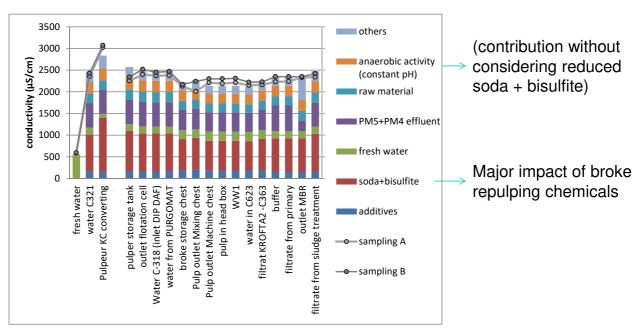
Use of modelling

SpotView Presentation/ Bruxelles / CTP/ 25 March, 2020

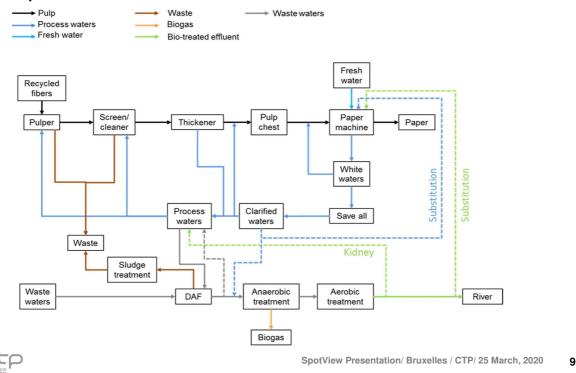
Method


- Digital model of process circuit design
 - Design of flowcharts with all process equipment, inputs, outputs and the different connections between them.
 - Data collection during on-site campaigns through:
 - Data collection from DCS control system
 - On site flow measurements
 - Physico-chemical analyses on pulp and process waters
 - Design of digital model of the process circuit with CTP simulation tool (PS2000).

Method

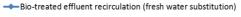

 Build mass and hydraulic balances simulation of the mill (PS2000) and implement ionic sources (PhreeQC)

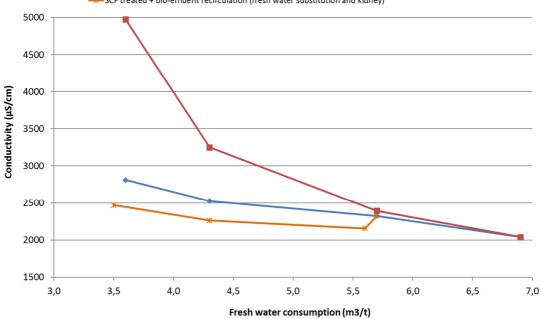
Conductivity sources



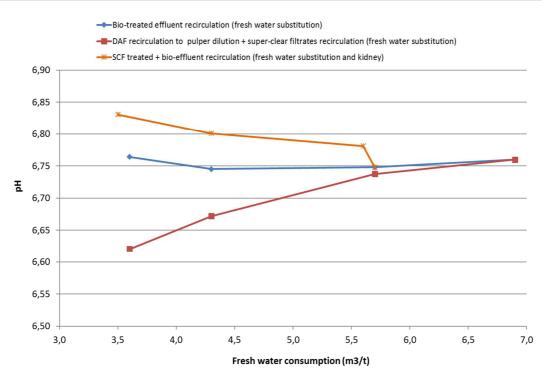
Conductivity « balance »

Proposed scenarios for clarified effluent reuse


Case study: Containerboard mill

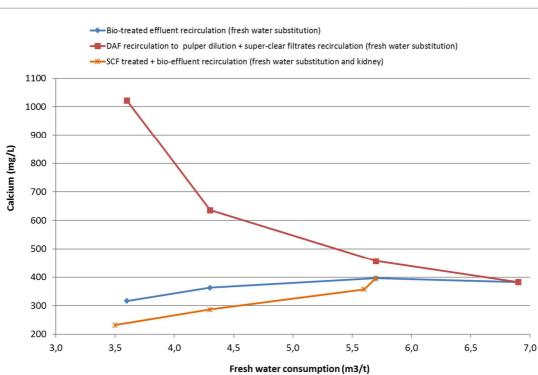

- Options for process water and effluent reuse
 - DAF effluents reuse as dilution water for stock preparation + substitution of fresh water by super-clear filtrates on some low pressure PM showers (sheet forming section)
 - Bio-treated effluent reuse as substitution of fresh water on low pressure PM showers (forming section)
 - Bio-treated effluents reuse as kidney loop in stock preparation facility + substitution of fresh water on low pressure PM showers.
 - This scenario requires to flush part of the super-clear filtrates out of the process, into the WWTP, in order to be able to increase the recirculated bio-treated flow

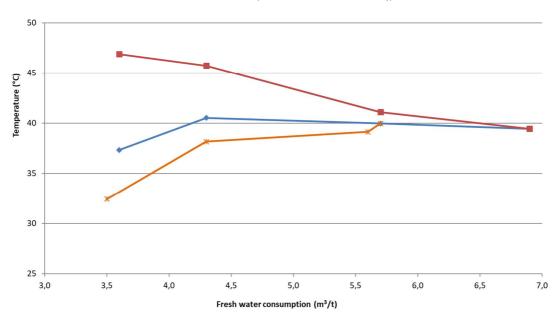
- -X-SCF treated + bio-effluent recirculation (fresh water substitution and kidney)



SpotView Presentation/ Bruxelles / CTP/ 25 March, 2020

11


Case study: Containerboard mill


SpotView Presentation/ Bruxelles / CTP/ 25 March, 2020

13

Case study: Containerboard mill

- → Bio-treated effluent recirculation (fresh water substitution)
- DAF recirculation to pulper dilution + super-clear filtrates recirculation (fresh water substitution)

Synthesis

	DAF recirculation to pulper dilution + SCF* recirculation (FW substitution)	Bio-effluent recirculation (FW substitution)	SCF* bio-treated + bio-effluent recirculation (FW substitution + kidney)
COD	-	+	+++
Conductivity		-	+
T°		-	
рН		+	++
Calcium		+	++

- Fresh water reduction from 7.0 to 3.5 m³/t
- Temperature decrease ⇒ heat pumps implementation

SpotView Presentation/ Bruxelles / CTP/ 25 March, 2020

15

Conclusion

- To go further on fresh water reduction:
 - Need case by case of a specific local study taking into account
 - · Pulp and water process circuits, existing and retrofit program
 - · Water management rules
 - Identification of chemicals sources
 - · Raw materials, fresh water, chemicals
 - Modeling of the mill
 - Mass and hydraulic balances
 - · Chemical equilibrium
 - Simulation of bio-effluent reuse according to different scenarios to predict COD, conductivity and pH outcomes

Exploitation's outlook in an OCC mill

- During Spotview, many scenarios concerning the reuse of water and recovery of heat have been investigated.
- From this we forecast extensive <u>stepwise reuse of bio-treated effluent</u>
 - 1. as a kidney to limit contaminant build-up in circuit water
 - 2. as fresh water substitution
 - Preliminary reduce pulp and water retention times in circuits to limit starch release and hydrolysis:
 - · Limit tanks volumes, piping routes, storage levels...
 - Complete the water circuits rearrangement with specific additional satellite processes to overcoming rising bottlenecks:
 - · Heat exchangers/pumps,
 - Sand/membrane filters
 - Deionization units,
 - Antimicrobial treatments...

SpotView Presentation/ Bruxelles / CTP/ 25 March, 2020

4-7

Extensive reuse of clarified effluents

- Implement effluent reuse as kidney
 - Additional loop with high circulating flows
 - Operates specifically in the pulp preparation area.
 - Solubilised species are washed out, including starch, VFAs, COD and free calcium.
 - Washed out starch is converted into usefull biogas in WWTP
 - Free calcium settles in form of precipitated lime and is disposed of
 - Depending on circuit closure rate, this can be based on
 - current WWTP
 - or an new extra short loop with small bioreactor next to the pulp building, completed by a lime trap (to avoid calcium building up)
- Constraints
 - Significant impact on process temperature. Heat recovery is recommanded
 - Small specific bioreactor would be less impacting with regard to temperature loss

Outlook - Reuse of clarified effluents

Substitue Fresh water

- Possibly wide use in many applications with low quality requirements
 - · Dilution of chemical additives and cooked starch,
 - Washing hoses around PM (house keeping),
 - · Wet end showers...To be investigated case by case

Constraints

- Out of scope applications due to mild effluent temperature and unsecured cleanliness
 - Cooling water for air compressors or hydraulic power units (several x10 m3/h).
 - Few high demanding technical applications like HP showers on felts
- Costs of water circuits rearrangements may increase fast.
 - · Concept is easier and cheaper to implement in a mill under construction
- Preliminary antimicrobial treatment needed

SpotView Presentation/ Bruxelles / CTP/ 25 March, 2020

19

Aknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723577

