Water reuse and valuable substances recovery in the Paper recycling industry

PTS Fachtagung - Altpapier im Fokus Dresden, May 15th, 2019

Eric Fourest, S. Prasse, C. Neyret, P. Huber - CTP, France

Presentation outline

- SpotView project introduction
- Effluent reuse for fresh water reduction
 - Water COD and salinity control
- Valuable substance recovery from process water

Concept of the project

• Objectives:

 To develop and demonstrate innovative, sustainable and efficient processes and technology components, in order to optimize the use of natural resources, especially water, in three industrial sectors (Dairy, Pulp and Paper and Steel)

- 14 existing and new technologies will be assessed, including solid/liquid separation, ultrafiltration, deionization, biological treatment, disinfection and chemical heat pump
- 9 water management practices assessed in simulated or operational environment for in the three industrial sectors
- 7 selected technologies demonstration in industrial environment


```
PTS Symposium / CTP-EF / Dresden, May 15th, 2019 3
```

Spot **O**View **European consortium** The XV of Europe SERE-Tech SAICA ArcelorMittal Valmet 🔷 New tρ **Knowledge Technologies Technologies Technologies** Providers suppliers end users developers ArcelorMittal BFI **essity** KADANT VTT PDC MEVGAL

from 9 EU countries

Technologies and Strategies

Strategies – Technologies – SpotView demonstrators

Technologies	•		
Thickener		D_T4.4	
Dissolved Air Flotation (DAF)		D_T4.4	D_T4.1
Sand filter			D_T4.1
Ultrafiltration (UF)	D_T4.2	D_T4.4 / D_T4.5	D_T4.1
Reverse osmosis (R)), ion exchange (IX), Capacitive Deionization (CDI)		D_T4.5	D_T4.1
Enhanced biological treatment		D_T3.4.2	
Micellar Enhanced Ultrafiltration (MEUF)	D_T4.2		
Elevated Pressure Sonication (EPS)	D_T4.2	D_T4.4	
Membrane Bio-Reactor (MBR)	D_T4.3		
Biocontrol Concept		D_T4.5	
Chemical Heat Pump (CHP)		D_T4.6	D_T4.6

Strategies	•		Ð
Separative technologies to recycle process water and recover valuable substances	D_T4.2(CIP)	D_T4.4(stock preparation)	D_T4.1 (back flush water)
Improve WWTP to recycle water and produce biogas	D_T4.3	D_T3.4.2	
Water reuse without treatment (cascade technique)			D_T3.1.2
Microbial control for water recycling		D_T4.5	
Saving fresh water using rain/sea water			D_T4.1
Waste heat recovery		D_T4.6	D_T4.6

D = Demonstrator

T = Task

Reference is made to the DoW/Annex 1

Effluent reuse for fresh water reduction

Stéphanie PRASSE, Patrick HUBER Catherine DESCHAMPS, Jérôme LEMERCIER Eric FOUREST (CTP)

Towards fresh water reduction

- Water circuits closure is still a hot topic due to environmental and regulation constraints and sustainable development papermaking group policy
- Reducing fresh water volume has environmental and techno-economical advantages:
 - Reduction of natural resources needs, energy consumption, effluent flow,
 - Fresh water and effluent treatment cost reduction,
 - More stable operating conditions.

Consequences of circuits closure

- Process water contaminants concentrations increase:
 - Suspended solids,
 - Organic dissolved and colloidal substances (mainly from raw material)
 - Inorganic dissolved substances (from raw material, chemicals, fresh water)
- Temperature increase
- Oxygen content decrease
- Volatile fatty acids increase due to bacteria fermentation (anaerobic conditions) ⇒ pH ≤

Spot **O**View

Consequences of circuits closure

- Increase of COD and conductivity when fresh water use is reduced
- Similar consequences, at different levels, in all types of production (OCC, tissue)

PTS Symposium / CTP-EF / Dresden, May 15th, 2019

Optimal Water management

Spot **O**View

How to control COD build-up ?

- ⇒ Water loop separation principle
- Counter-current circulation of process waters
- Effluent reuse after biological treatment

Water management: loop separation

Optimal water management Process simulation

• Example : theoretical simplified OCC line

PTS Symposium / CTP-EF / Dresden, May 15th, 2019 15

Effluent reuse for fresh water saving

Simulation realised from the modelled tissue mill
 Evolution of COD, pH, calcium, VFA, ionic species can be assessed

Effluent reuse for fresh water saving

Simulation of conductivity

Sources of water salinity

17

• Fresh water contribution:

80 to 1200 µS/cm

- Based on 36 paper mill sites CTP database (Ca²⁺, HCO₃⁻, SO₄²⁻...)
- Pulp sources
 - from lab test and simulation

Raw material	Conductivity µS/cm/(kg/m³)
Kraft Pulp	1 to 3
TMP	4 to 6
DIP	5 to 6
RCF	2 to 9

Main ions: Na⁺, Ca²⁺, SO₄²⁻, Cl⁻

- Main process chemicals
 - ex: DIP + tissue mill

Additives	Conductivity µS/cm/(kg/m ³)
NaOH (DIP alcali)	1.0
NaHSO3 (bleaching)	0.43
DAF floculant	0.32
Wet Strength Resin	0.34

Water conductivity increase

- Conductivity "balance" in process water
 - Ex: DIP + tissue mill producing 3.6 T/h with 6.8 m³ fresh water /T

Effects of bio-treated effluent reuse

• Effect of conductivity increase on process additives

- Negative impact on DAF flocculant performance
- No impact on wet-strength development

Spot **O**View

(conductivity increase in the process water was simulated by concentrating the aerobic treatment effluent sample through gentle evaporation)

Conclusions

- Raw materials contribution to process water conductivity vary widely depending on their nature
 - Recovered papers contribute more than kraft pulps
 - Major ions are sodium, calcium, and sulfate
- Fresh water can be a non-negligible ions source depending on paper mills geographical situation
- Chemicals are important ions source, especially alcaline and bisulfite in DIP mills.
- Anaerobic microbial activities have major consequence on conductivity (acidification, calcium dissolution, neutralisation...)
- **Bio-treated water recycling** has no impact on Wet-Strength and negative impact on DAF flocculant.
 - ⇒ Increase DAF polymer dosage (+50%) or use DAF polymer with higher DS
 - ⇒ Neutralise residual cationic demand of bio-treated water with tertiary physico-chemical treatment before recycling

PTS Symposium / CTP-EF / Dresden, May 15th, 2019 21

Conclusion

• Strategies for water reduction and effluent reuse:

Possible Drawbacks	Solutions
Organic matters build-up	Efficient water management: Loops separation Counter-current circulation Bio-treated effluent recycling
Volatile fatty acids	 Control of anaerobic bacteria development Antimicrobial treatments Circuits and tanks design and management Bio-treated effluent recycling
Ionic species increaseCalcium dissolutionSodium or Sulphate build-up	Bio-treated effluent recycling Tertiary deionization: RO, EDI, CDI

Valuable substances recovery from stock preparation

Christophe NEYRET, Patrick HUBER, Catherine DESCHAMPS, Jérôme LEMERCIER, Eric FOUREST (CTP)

- P. Thibault, X. Lacour, A. Lascar KADANT LAMORT
- S. Andres SAICA EL

Outline

- Context for valuable substance recovery from OCC
- Starch release during pulping (laboratory / industrial scale)
- Assessment of the recyclable organic materials recovery
- Recovered organic matter valorisation
- Conclusion

Valuable substance recovery

Spot **O**View

Context

- Starch and other organic substances are released in water during pulping of recovered paper for packaging board production
 - Loss of valuable substance
 - Starch fermentation produces negatives effects
- Potential for starch recovery: 20 to 40 kg/t
- Organic substances removal could be a strategy to reduce bacterial activities and negative impacts

Starch release during pulping

Lab and pilot scale measurements - Methodology

Laboratory scale measurement - Results

	Before pulping		After pulping			
OCC samples	Starah		Starch released in water			Starch
OCC samples	content (kg/T)	COD (kg/T)	D Total Colloids Dissolved T) (kg/T) (kg/T) (kg/T)	remaining in the pulp (kg/T)		
UCB 4.01.	76	52	33	20 (60%)	13 (40%)	43
4.01	62	51	26	14 (54%)	12 (46%)	36
5.02	37	39	15	6.3 (42%)	8.7 (58%)	22
1.05	39	39	14	4.6 (33%)	9.4 (67%)	25

PTS Symposium / CTP-EF / Dresden, May 15th, 2019 27

Spot **O**View

Starch release during pulping

Starch release during industrial pulping

Starch release during pulping

Starch - VFA - COD

centre technique du papier

PTS Symposium / CTP-EF / Dresden, May 15th, 2019 29

Valuable organic materials recovery

• Pulp washing stage

- To extract dissolved and colloidal organic matter released from the fibre stock
 - Belt washers
 - Screw press
- Disk Filter
- Rotative screen

- Technologies comparison

Technologies	Advantages	Drawbacks
Screw press + Rotary filter	Hydraulic capacity	Cost (+) Low fibre retention
Disk filter	Fine retention	Cost (++)
Washer	Washing rate removal (Starch and TSS) - Cost	Poor selectivity Fine retention

Selected for pilot trials

Concentration stage technologies comparison

Technologies	Advantages	Drawbacks
Micro-filtration	 Separation efficiency > 90% Adjustable Cut-off 	- Cost (++) - Maintenance
Centrifugation (Continuous flow)	- High thickening rate	- Cost (+) - Limited centrifuge velocity for high flow rate
Dissolve Air Flotation (DAF)	- Cost (-)	- Floculation required - Coagulant / flocculant needed

Selected for pilot trials

PTS Symposium / CTP-EF / Dresden, May 15th, 2019 31

Conclusion

- Valuable organic matter released during pulping of recovered paper
 - ~50% of starch contained in paper is released in water
 - ~25 % of initial pulp starch content can be recovered
- Technologies were selected for pilot trials (Kadant Lamort, CTP)
 - Extraction stage: washer thickener
 - Concentrator stage: Dissolved Air Flotation or Centrifuge Decanter
- Recovered starch valorisation to be evaluated...
 - Fresh starch partial substitution
 - Wet end additive
 - Size press
 - Biogas production
 - Organic synthesis
- ...taking into account detrimental impurities effect

Thank You !

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723577

for Research & Innovation