
Issues and strategies for effluent stream valorization and water conservation in the Dairy Industry

4th October, 2018 - Avilés, SPAIN
 Kostas Georgakidis (MEVGAL)
 Dimitrios Sioutopoulos, Anastasios Karabelas (CERTH)

MEVGAL - Macedonian Dairy Industry Spot View

- is located in Northern Greece, in Koufalia, N/W of Thessaloniki in the historical area of MACEDONIA.
- •was founded in 1950 and is family owned
- Employs 650 people
- Produces major dairy products of:
 Milk, yogurt and cheese

MEVGAL ranks:

4th among all the Greek Fresh Dairy producing companies 16th among all Greek Food producing companies

53rd among all Greek companies

MEVGAL

Milk. The essence of our life

Annual Net Turnover 2017: € 110 mil

3

MEVGAL today

Incoming milk

- 80.000 tn/year cow
- 13.000 tn /year sheep-goat

Plant in Koufalia

Production

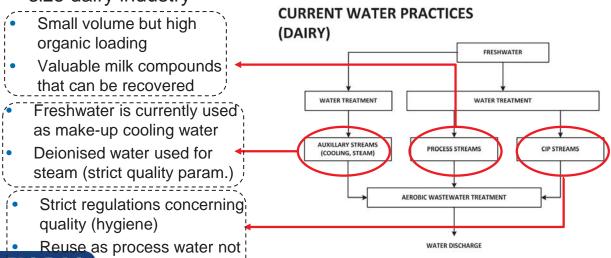
- 60.000 tn/year milk
- 22.000 tn/year yogurt
- 4.000 tn/year cheese

Distribution Center in Athens

Issues & Strategies

- Effluent stream valorization and water conservation in dairy industry
- Various scenarios have been developed by CERTH and assessed in parallel with MEVGAL, aiming at
 - recovery of valuable compounds
 - minimizing freshwater consumption
 - reducing energy expenses for water and wastewater treatment
 - biogas production

Milk. The essence of our life


SpotView 1st Workshop / October 4th, 2018 5

SpotView 1st Workshop / October 4th, 2018 6

Present schemes for process and cooling water use in the dairy industry

- Water plays an important role to dairy industry; 2 10 m³ freshwater per ton of milk processed, depending on the dairy product & industry
- Equal amount of wastewater needs to be treated prior to discharge
- Current process scheme concerning water uses in a small/medium size dairy industry

Strategy

- Possible technologies for valuable compounds recovery and water treatment and reuse:
 - Membranes
 - Hybrid membrane technologies
 - Anaerobic/Aerobic Bioreactors
 - Elevated pressure sonication
- A favorable combination of the examined technologies will be pursued for subsequent demonstration in the dairy industry.

SpotView 1st Workshop / October 4th, 2018 7

Main dairy water streams

- CIP water
- Process water (for flushing, in milk concentrate etc.)
- Cleaning water (external cleaning)
- Cooling water
 - Ambient temperature
 - "Ice" water (0-2 °C)
- Boiler feed water

Main dairy wastewater streams

- CIP effluents
 - Yogurt
 - Milk
 - Cheese
- Flushing water effluents (Yogurt, Milk, Cheese)
- UF permeate
- Whey stream
- Fat-free whey stream
- WWTP inlet

SpotView 1st Workshop / October 4th, 2018 g

Main process Streams in Dairy

- Flushing
 - The first seconds between products changes or the first step before a CIP cycle start. It is rich in proteins and fat
- Whey stream
 - By-product from the production of cheese (yellow or white cheese). It is used for the production of whey cheeses. It is rich in proteins
- Fat-free whey stream
 - By-product from the production of whey cheese. It has high content of salt.
- UF permeate
 - It is produced during the ultra-filtration of milk. It's main substance is lactose

Process Streams in Dairy - Characteristic

- +++
 - Rich in substances (proteins, fat, lactose, etc.) that could be recycled
 - Volumes are low
- ---
 - There is a high number of low volume streams from different production processes
 - Some of them have high seasonality
 - They are not located in a place or in a department and thus they are difficult to be collected

SpotView 1st Workshop / October 4th, 2018 11

Complete CIP cycle (typical)

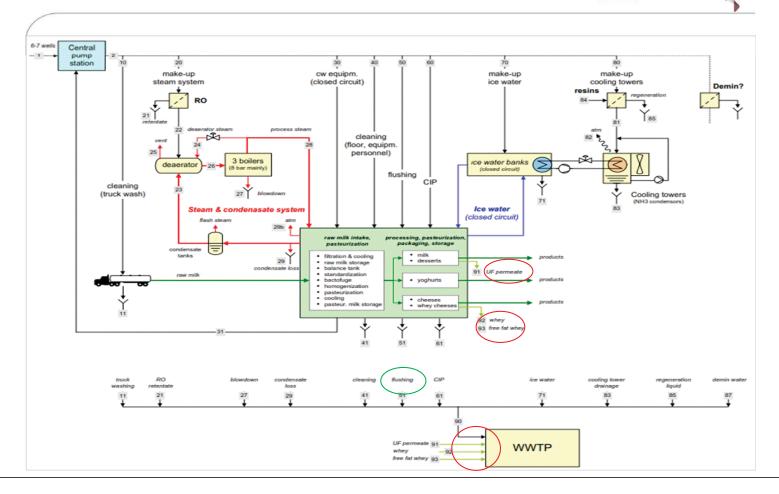
Step	Tank CIP (Typical)		
1	Water 20°C	120 sec	\leftarrow
2	Soda (alkali) 80°C (closed loop)	660 sec	
3	Water 20°C	180 sec	
4	Acid 65° C (closed loop)	300 sec	
5	Water 20°C	300 sec	_
6	Detergent	120 sec	

CIP Streams in Dairy - Characteristics

- +++
 - High volumes of water that potentially could be recycled
 - The content in substances is low
- ---
 - There is a large number of cycles from different production processes
 - They are rich in chemicals

SpotView 1st Workshop / October 4th, 2018 13

Main auxiliary streams



- Cooling water
 - Ice water (0-2 °C) in closed loop
 - Fresh water (ambient temperature)
 - Water for cooling of equipment (deionized water in some cases)
- Boiler feed-water
 - It is mainly water from RO, in a closed loop

Complete mapping of water streams

Process and cooling water mapping in the dairy industry

Workplan

- Collection of different streams (CIP and flushing) and determination of their physicochemical characteristics
- Determination of CIP and flushing stream qualities and volumes
- Identification of the legislative and the technological constraints concerning water quality characteristics
- Set-up experimental equipment to study different process streams

Questions to be answered

- Which streams should be used for recovery of valuable compounds?
- How much biogas can be produced?
- Does MBR permeate meet specifications for make-up water?

Strategy for process and cooling water reuse Spot 🔾 in dairy industry

Main points of intervention:

- Upgrade WWTP with an anerobic pre-treatment step for biogas production from whey and/or fat-free whey and/or UF permeate streams diluted with WWTP inlet and a MBR for high quality effluent etc.
- Collection of water streams (mainly flushing milk and yogurt) for recovery of valuable compounds
- Collection of separator and / bactofuge discharge for treatment with EPS technology and possible production of animal foods

Benefits:

- Recover proteins, lipids etc.
- Reduce WWTP organic loading
- Recover biogas (renewable energy source)
- Substitute make-up water with treated WWTP effluent
- Reduce freshwater consumption

SpotView 1st Workshop / October 4th, 2018 17

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723577

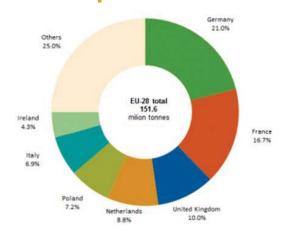
Innovative technologies for valuable substance recovery and water reuse in the Dairy industry

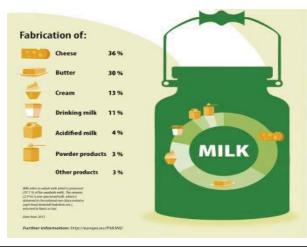
Aviles, Spain October 4th, 2018

Dimitrios Sioutopoulos, Anastasios Karabelas (CERTH), Narinder Bains (SERE-Tech), Konstantinos Georgakidis (MEVGAL)

Presentation outline

- Introduction-Dairy industry
- Technologies for valuable compounds recovery
 - Membrane technologies /Hybrid membrane technologies
 - Elevated pressure sonication
 - Results of laboratory tests
- Technologies for wastewater treatment
 - Aerobic treatment/ Anaerobic treatment
 - Membrane Bioreactor (MBR)
 - Results of anaerobic/aerobic MBR laboratory tests
- Final conclusions


Dairy industry in EU


Total milk production in EU

Milk production %

150 million tons per year

Milk products

65 million tons per year

3

Water consumption in dairy industry

Annual milk production

Specific water consumption

Annual water consumption

147,000,000 m³

~4,0 m³/m³ milk

590,000,000 m³

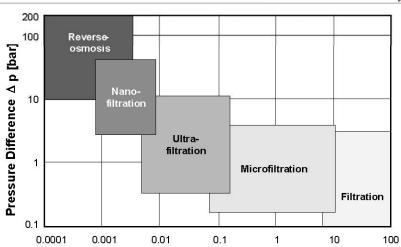
SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

Separation Capabilities of Membranes

MF

- Suspended solids
- Colloidal matter
- Microorganisms

UF


- Organic macromolecules
- Pathogens

NF

- Multivalent ions
- Hardness removal
- Low molecular weight organic compounds

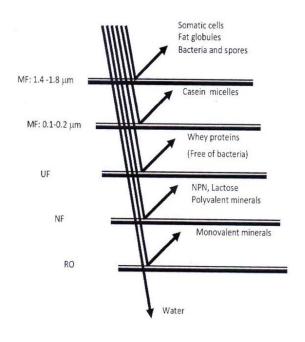
RO

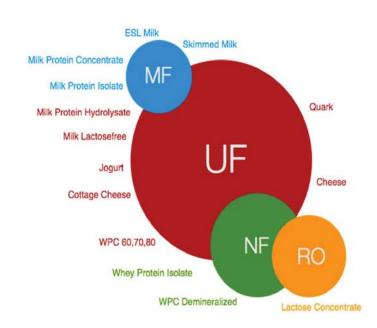
- Dissolved salts
- Low molecular weight organics

Particle and Molecular Size [µm]

	AL SANCOR COMME NUMBERON MARKETING MARKETING MARKET SANCORD SA		
Membrane technology	Typical pore size range, μm	Typical operating pressure, bar	Rate of flux, L/m ² ·d
Microfiltration	0.1-10	0.07-1	405-1600
Ultrafiltration	0.01-0.1	0.7-7	405-815
Nanofiltration	0.001-0.01	5-10	200-815
Reverse osmosis	0.0001-0.001	8.5-70	320-490

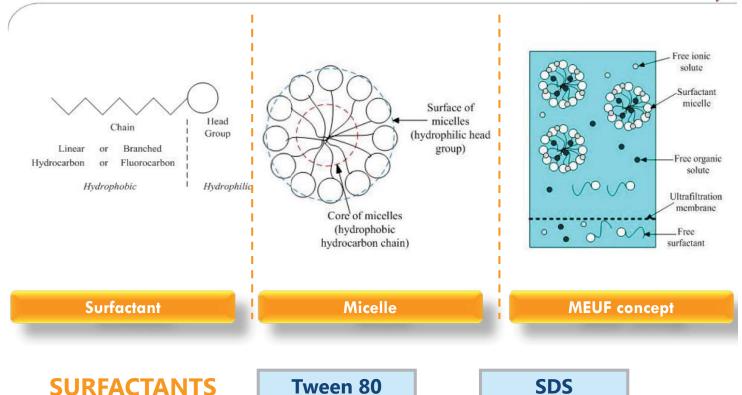
SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018


5


Membranes in dairy industry

Rejection of milk components

Membrane usage

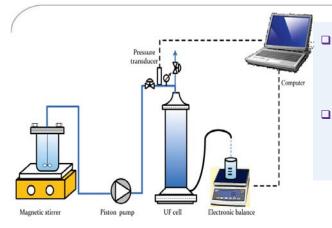


Micellar enhanced Ultrafiltration-MEUF

SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

7

Selective separation technologies for the dairy industry - Lab tests


Pressurized membrane cell

UF/NF membrane Lab pilot

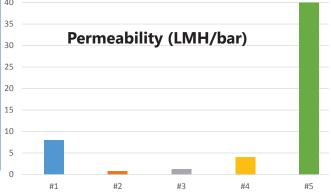
Experimental conditions

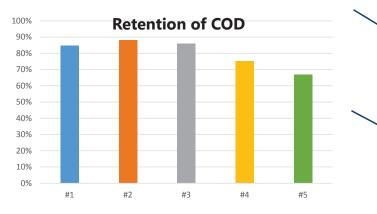
- Treated sample
 - le
- Membrane type

- 1. Flushing yogurt
- 2. Flushing milk
- 1. UF PAN 20 kDa (AMI®)
- 2. UF PES 20 kDa (ALVA LAVAL)
- 3. MF 0.20 µm (MILLIPORE

Dead-end tests

SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

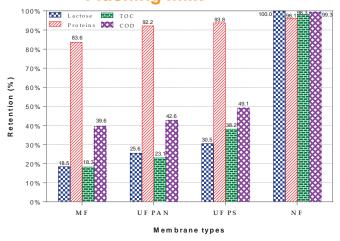

9

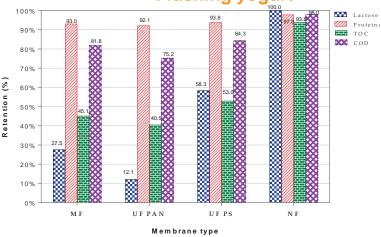

Experimental results

#	Feedwater	Membrane	Applied pressure	Permeability Clean water (LMH/bar)	Permeability (LMH/bar)
1	Flushing milk	UF PAN 20 kDa	0.5 bar	550	8
2	Flushing milk	UF PES 20 kDa	3.0 bar	60	0.8
3	Flushing milk	UF PES 20 kDa	5.1 bar	80	1.2
4	Flushing yogurt	UF PES 20 kDa	3.0 bar	40	4
5	Flushing yogurt	MF 0.20 μm	0.14 bar	12,000	40

MF (#5) membrane exhibits the larger permeability, but the organic load retention is rather poor

UF membranes exhibit high COD retention (80%-90%)


Retention characteristics



Flushing milk Dead-end tests

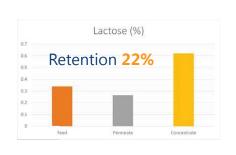
Flushing yogurt

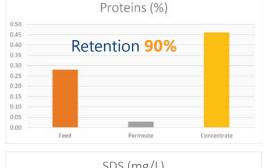
- Valuable compounds (proteins, fat) are effectively retained by UF membranes
- Lactose is totally rejected by NF, whereas UF membranes retain appr.20%-50% of lactose
- In general, higher recovery of valuable compounds using flushing yogurt compared to flushing milk

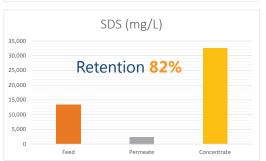
SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

11

Crossflow tests - MEUF







		Fat (%)	
0.40			
0.35			
0.30	Doton	tion 030/	
).25	Reten	tion 92%	
0.20			
).15			
0.10			
0.05			
0.00			
	Feed	Permeate	Concentrate

#	Feedwater	Surfactant	Membrane	Applied pressure
1	Flushing Milk 3.5%	SDS 5CMC	PCI FPA03, PVDF	3.5 bar
2	Flushing yogurt 10%	SDS 5CMC	PCI FPA03, PVDF	3.5 bar

General results

- High protein (and fat) retention
- For the retention of lactose, another membrane process
 (e.g. nanofiltration) would be required
- Substantial concentration factor achieved for yoghurt
- Very low membrane fouling tendency observed
- Relatively small energy consumption (based on required pressure)

SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

13

Elevated pressure sonication

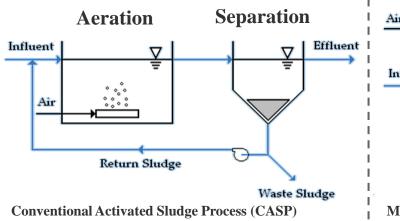
- 75-100 bar Pressure, 40-55 °C Temperature
- Separator and Bactofuge sludge v. high in bacteria count 10⁷-10⁸ log counts
- Stabilize and separate for recovery
- EPS achieves 4-6 log₁₀ reductions in bacteria at low energy treatment 10-30 kJ/litre

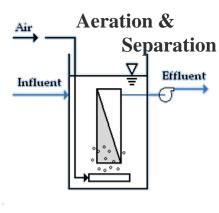
Aerobic CFU of feed and treated after EPS

Biological wastewater treatment

Biogas (CH₄ and CO₂) and sludge

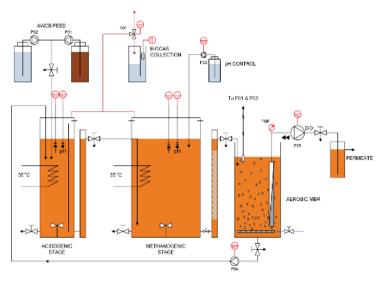
H₂O,CO₂ and sludge


	Anaerobic	Aerobic
Space required	Small	Large
Energy input	Low	High
Energy production	Yes (biogas)	No
Sludge production	Low	Yes
Nutrient removal	No	Yes
Investment cost	High	Low
Operational cost	Low	High
CO2 emission	Low	High


15

Membrane Bioreactor (MBR)

- An attractive alternative of the Conventional Activated Sludge Process (Aerobic process) by combining biological processes and membrane filtration
- Sedimentation tanks and/or sand filters are replaced by membrane filtration (Microfiltration or Ultrafiltration)



Membrane Bioreactor (MBR)

Anaerobic/aerobic Membrane Bioreactor (MBR) - Lab tests

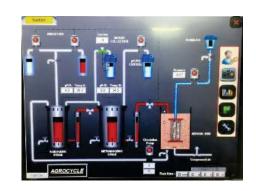
- Fully automatic, PLC controlled pilot plant
- Operation under different organic loading rates (i.e. 0.5 - 10 Kg COD/m³·d) and COD values (i.e. 5 - 20 Kg/m³)
- Automated pH correction, backwashing of MBR membranes.

Characteristics of activated sludge samples.

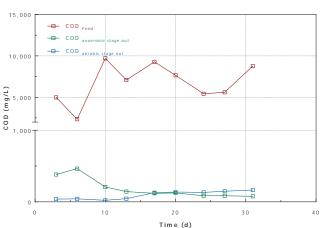
Parameter	Anaerobic sample	Aerobic sample
рН	6.92	7.48
MLSS (mg/L)	13,650	4,960
MLFSS (mg/L)	3,050	820
Volume (L)	25	20

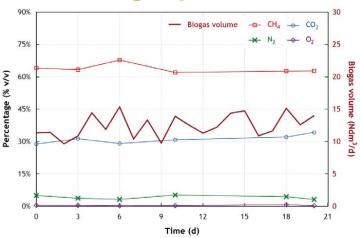
SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

17


Anaerobic/aerobic Membrane Bioreactor (MBR) - Lab tests

Fully automatic, PLC controlled pilot plant Operation under different organic loading rates (i.e. 0.5 - 10 Kg COD/m³·d) and COD values (i.e. 5 - 20 Kg/m³)


Automated pH correction, backwashing of MBR membranes.


Anaerobic/aerobic Membrane Bioreactor (MBR) - Lab tests

COD removal

Biogas production

- Particularly high reduction of organic matter (COD) ~96% for the anaerobic stage.
- The quality of the aerobic MBR permeate is considered appropriate for cooling water.
- The quality of the produced biogas is considered satisfactory (approx. 65% CH₄)

SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

19

Conclusions

- Microfiltration due to large pore size exhibits poor useful compounds retention.
 Nanofitration is characterized by the best retention/selectivity; however, due to increased feed-pressure requirements, energy consumption is significant.
- Ultrafiltration (UF) exhibits satisfactory selectivity and modest energy consumption.
- Micellar enhanced ultrafiltration (MEUF) does not lead to increased separationprocess efficiency
- A particular Ultrafiltration (UF) system implementation was selected as the best option for further pilot testing.
- Elevated pressure sonication (EPS) process performance can produce higher value protein concentrate for the dairy and animal feed market.
- The anaerobic/aerobic MBR is considered quite satisfactory for the treatment and valorization of dairy effluents with significant organic load.

Aknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723577

SpotView Workshop/ Dimitris Sioutopoulos / October 4th, 2018

21