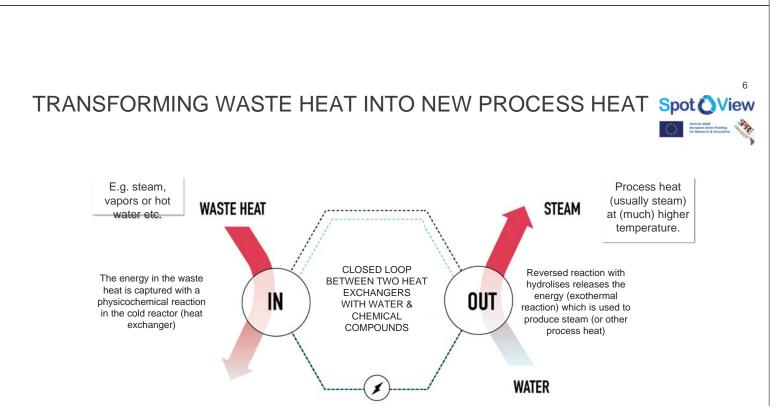


- Despite process optimizations and continuous search for energy efficiency, a lot of energy is still being lost as waste heat (residual heat from processes and power generation)
- Thermodynamically it is most efficient to make heat with heat. (e.g. more efficient than using it to generate electricity)

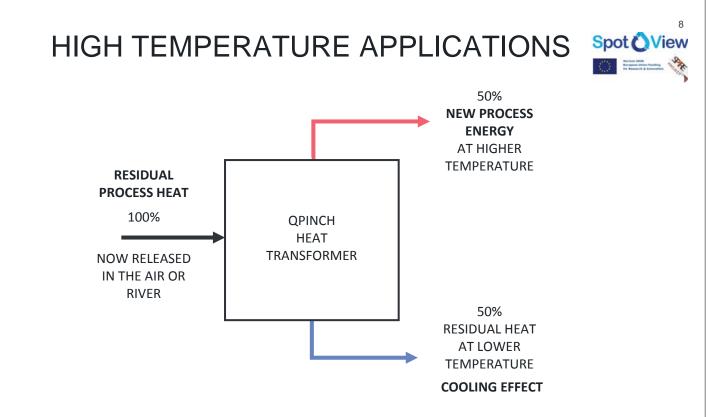
Spot OV

WE GENERATE **PROCESS HEAT** FROM **WASTE HEAT**

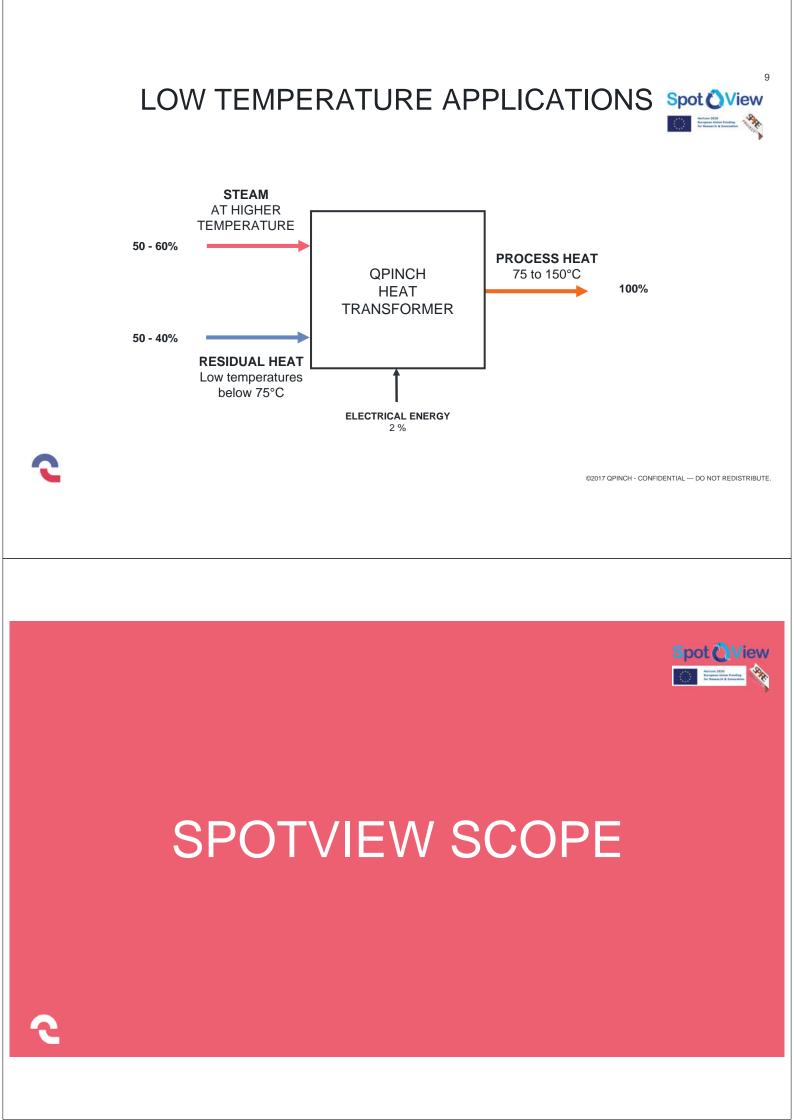


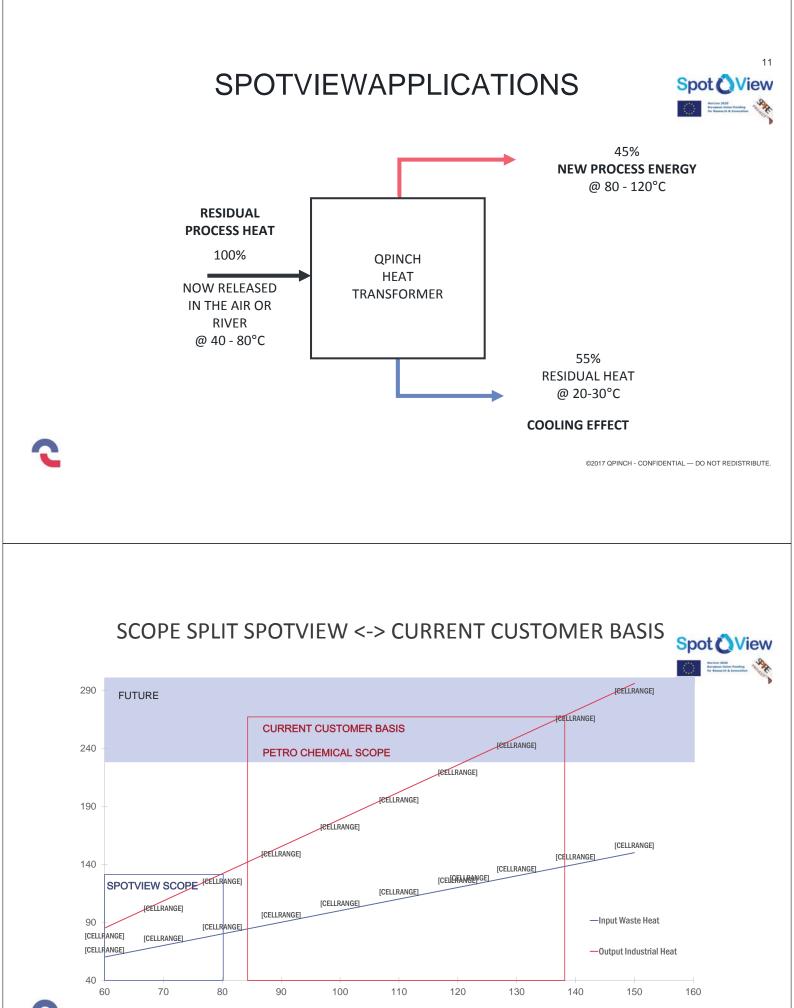
WASTE HEAT

HOW DOES IT WORK



Little electrical energy is needed to operate the Qpinch Heat Transformer. Typically this 3% of output duty.


©2017 QPINCH - CONFIDENTIAL - DO NOT REDISTRIBUTE.

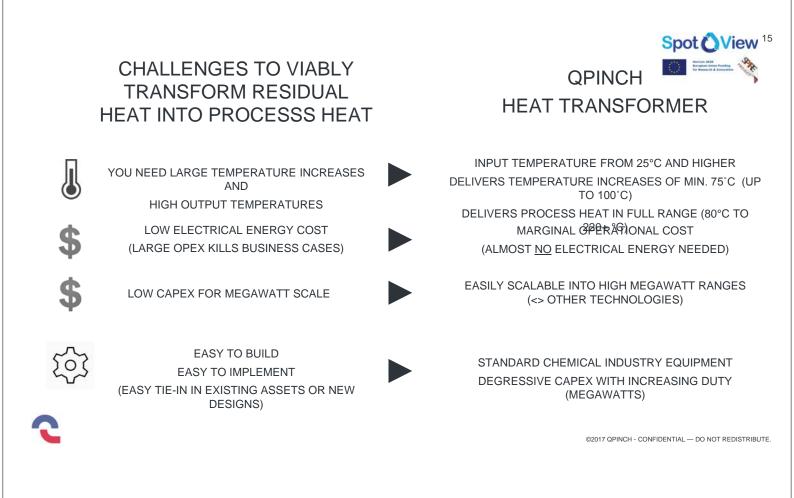


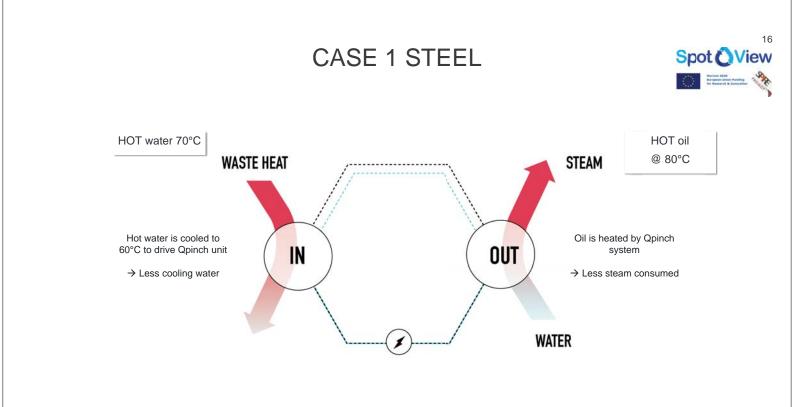
PRODUCT

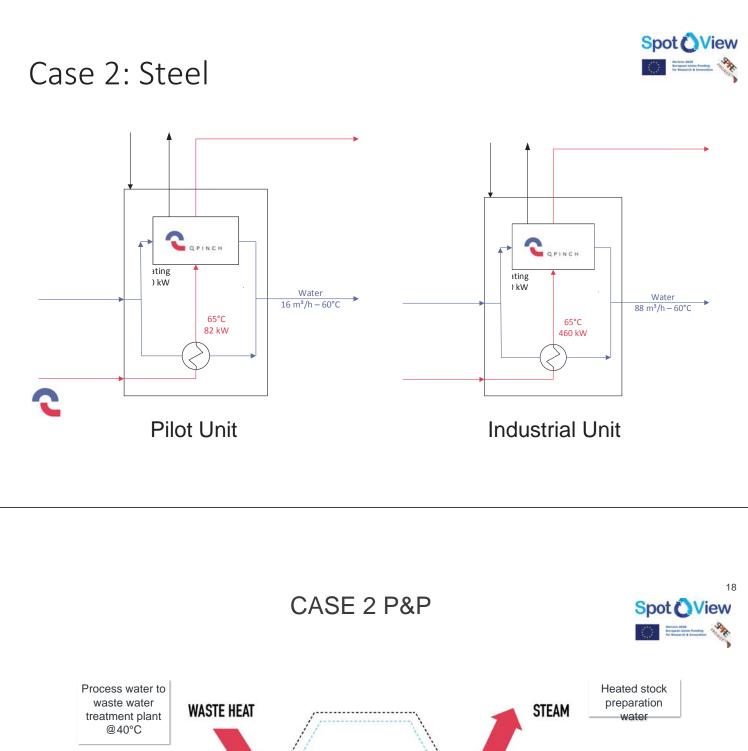
©2017 QPINCH - CONFIDENTIAL — DO NOT REDISTRIBUTE.

©2017 QPINCH - CONFIDENTIAL - DO NOT REDISTRIBUTE.

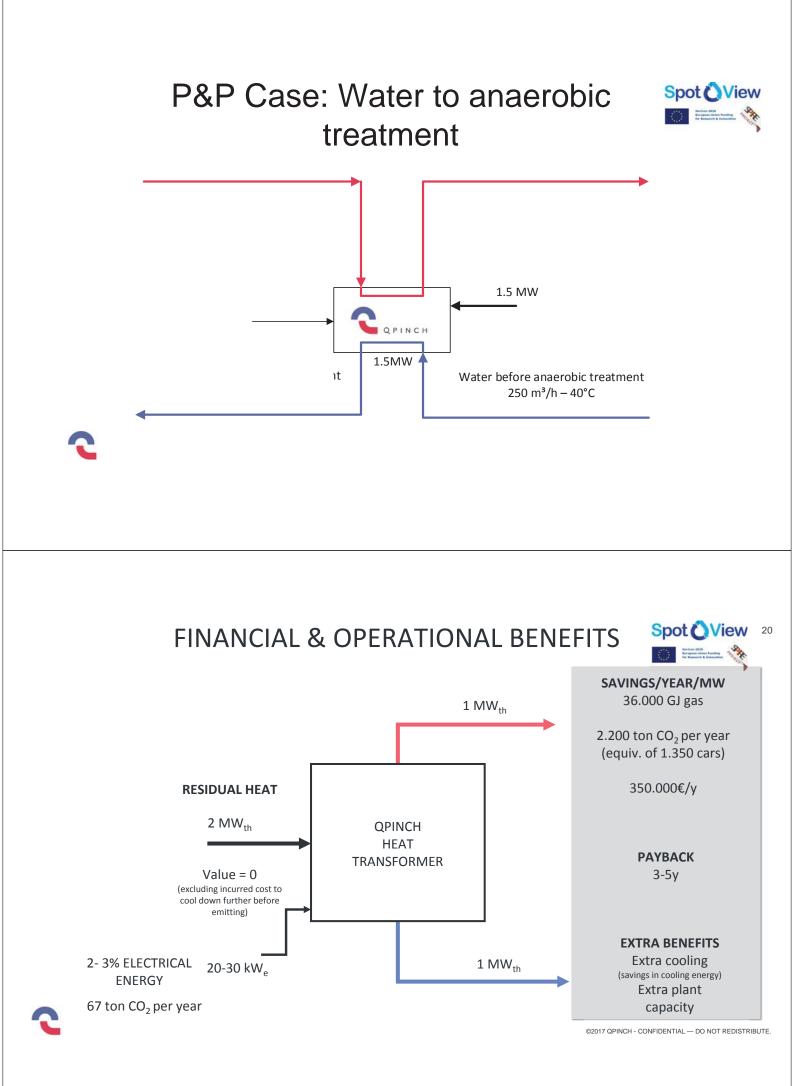
THANKS FOR YOUR ATTENTION

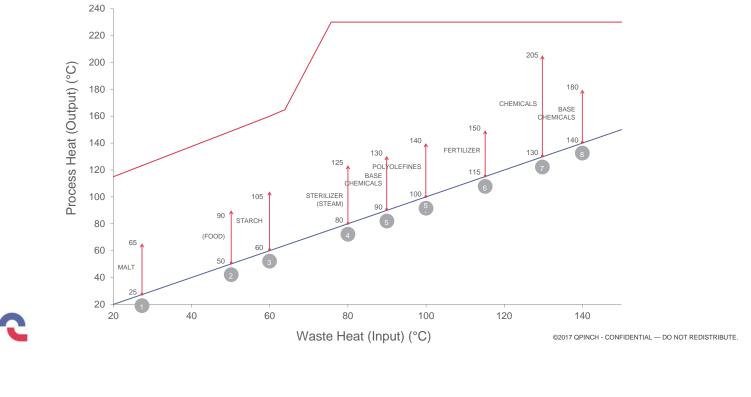

This project has received funding from the European Union's Horizon 2020 research and innovation programm under grant agreement No 723577


©2017 QPINCH - CONFIDENTIAL — DO NOT REDISTRIBUTE.



BACKUP SLIDES





Water is cooled to drive Qpinch unit together with the consumption of steam → Less cooling water → Less steam consumed WATER

2014

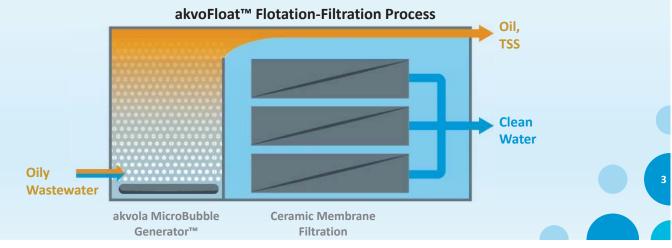
- Headcount:
 - 24 Frost & Sullivan Technology Innovation Award 2017
- Honors & Awards:
- Water Innovation Europe 2016 IDA Award 2015 GreenTec Awards 2014 ACES Awards 2014

The Problem: Hard-to-treat industrial waters

Conventional technologies fail to treat hard-to-treat waters reliably and cost-effectively

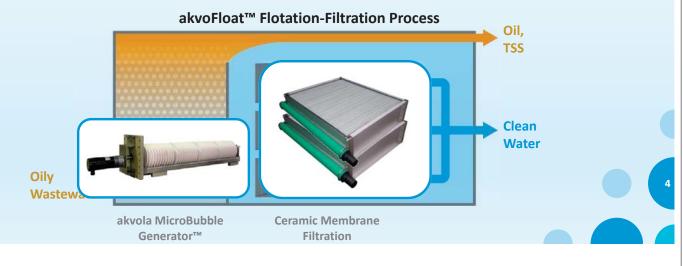
HARD-TO-TREAT WATERS:

- High oil concentration (400-30.000 mg/l)
- High suspended solids load (> 5.000 mg/l) or turbidity (> 10.000 NTU)
- Unpredictable variations in flow and load
- High temperatures (> 40°C)
- High salinity (TDS > 50.000 ppm)
- High Harsh chemical environments (pH 2-13)

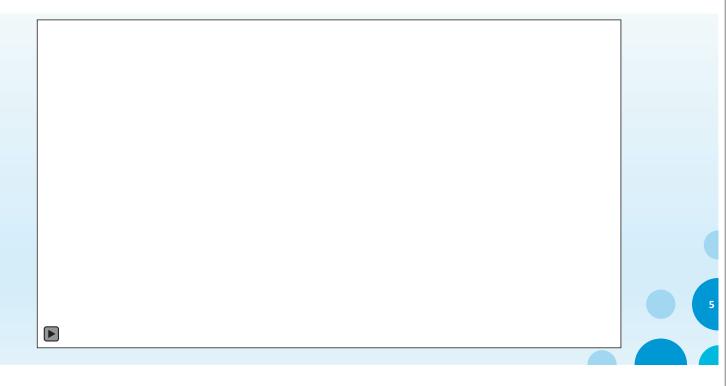

Industries:

- Metalworking
- Refining & Petrochemicals - Upstream Produced Water
- Upstre
- Food & Beverage
- Chemical
- Steel

The Solution – akvoFloat™


akvoFloat[™] is a separation technology based on a proprietary flotation-filtration process. This process leverages the akvola MicroBubble Generator[™], novel ceramic membranes and our proprietary membrane cleaning strategies, resulting in the most energy-efficient design on the market for oil (free, dispersed & emulsified) and suspended solids removal in hard-to-treat waters.

The Solution – akvoFloat™



akvoFloat[™] is a separation technology based on a proprietary flotation-filtration process. This process leverages the akvola MicroBubble Generator[™], novel ceramic membranes and our proprietary membrane cleaning strategies, resulting in the most energy-efficient design on the market for oil (free, dispersed & emulsified) and suspended solids removal in hard-to-treat waters.

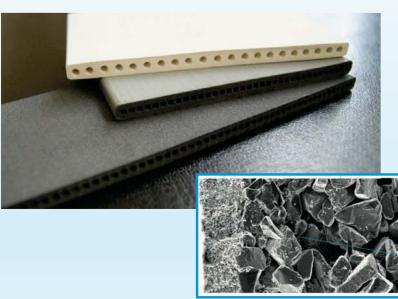
The Process Technology – akvoFloat™

Targeted Contaminants

akvoFloat™ reduces many contaminants (chemicals can improve removal rates significantly). good removal organics medium removal low removal TOC CFU oil organic acids hydrocarbons inorganics solids polymers fat & grease BTX Cu TDS TSS detergents Cd sand COD algae humic substances phosphorus fibres silica AOX microorganisms Zn nitrogen hardness DOC BOD Cr Ni

Innovation in Detail

Innovation #1: akvola MicroBubble Generator™


Microbubbles are generated with 90% less energy than conventional technologies

- Material: Al₂O₃
- Pore size: 2 μm
- Average bubble size: 70-100 μm
- Operating pressure: 1-1,5 bar (max. 3 bar)
- Air/Gas consumption: 15 NI/m³
- Energy Consumption: 0,1 kWh/m³
- Use of any gas is possible (air, ozone, nitrogen, ...)

Innovation #2: Filtration Membranes

akvola Technologies selects the right membrane for each application

- Material: SiC or Al₂O₃
- Submerged vacuum/gravity driven
- Pore size: 0,04-0,2 μm
- Outside-in filtration
- Typical flux: 150-250 lmh*
- Operating pressure: -0,2 to -0,4 bar
- Operating temperature: 10-70 °C

*In heavily loaded industrial wastewater

Innovation #3: Membrane Cleaning Strategies

aKVOLa TECHNOLOGIES

Conventional and proprietargy strategies

- Chemical Enhanced Backwash (CEB): dosing of chemicals into the backwash water
- Cleaning in Place (CIP): soaking the membrane in a chemical solution
- Proprietary Cleaning Strategy: akvoClean
 - Fast oxidation by activating free Cl-ions
 - NaOCl and acid: good effectiveness, 5 min duration, preventive effect, low chemical consumption
 - Air Flush: "backwash" with air
 - Hot solutions increase effectiveness

Before and after akvoClean (refining WW)

Innovation #4: Process Automation

akvoFloat[™] can adjust to different conditions.

- akvoFloat[™] units are fully automated and can be equipped with remote control.
- The optimal operation conditions are adjusted according to the feed quality:
 - membrane flux
 - backwash intervals
 - flotation bubble size
 - float layer removal
 - chemical cleanings

akvola

Markets & Applications

- Minimize wastewater volumes and costs
- Extend fluid lifetime
 Treatment of metalworking fluids, die casting emulstions, washing and rinsing waters, deoiling baths, ...
- More...

- Wastewater reuse
- Revamp secondary treatment
 Treatment of segregated effluents: desalter effluent,
- tank bottom draws, ... Hydrocarbon recovery
- More...

- Produced water reuse (PWRI, EOR, SAGD)
- Meet offshore discharge limits
- More...

- Wastewater reuse (e.g. sand filter backwash)
 Treatment of cooling water
- from a direct contact circuit Process water from pickling
 - and organic coating
 - More...

Benefits of our akvoFloat[™] systems

- Fast Payback Times between 12 and 24 months through the 95% lower energy consumption and lower CapEx in comparison to evaporators and conventional flotation-filtration treatment trains
- Less Waste (< 5%) through a high water recovery rate
- No Irreversible Fouling Membrane permeability can always be recovered through our innovative cleaning strategies, even in hard-to-treat waters
- High Removal Efficiency from very high to very low concentrations in one single step reliably

Contact Details

Private and confidential

Treatment of Dairy and Paper & Pulp Effluents using Elevated Pressure Sonication

Avilés, Spain, October 4th, 2018 Narinder Bains, SERE-Tech Innovation Ltd (Est. 2008) www.seretechinnovation.com

Introduction

Dairy Industry Water Usage (ref: BREF doc)

- Water consumption is mainly associated with cleaning operations
 - Surface and ground/potable water for cooling
 - Flushing
 - CIP
- Reasonably efficient water consumption ~1-5m³/m³ of milk
- Wastewater is the main environmental issue in the dairy processing industry

Dairy Industry

- Wastewater volume in a well managed installation is reported to be 1-2 m³/m³ of milk
- However, this is not typical in current dairy installations where approximate values are closer to:-
 - Milk, Cream, Yoghurt 3m³/m³ of milk
 - Butter, Cheese 4m³/m³ of milk
 - Dry milk, whey $-5m^3/m^3$ of milk
- Average COD for dairy wastewater ~ 3000mg/l
- Volumes range 500m3 1000m3 per day
- Cost of WWTP €1M €1.5M per annum

Treatment of Dairy, Paper and Pulp Effluents using EPS/ Narinder Bains / 04th October, 2018 3

Context

Dairy Industry

- A significant portion of dairy wastewater COD results from skimming cream from milk using separator centrifuges and bacto-centrifuges
- 'Desludge' makes up 0.1 0.15% volume of the milk feed
- High in bacterial load 107 108 cfu/ml and highly unstable
- Thermal treatment can cause bacterially induced solidification of protein/solids
- Bactofuge 14 16% protein, 20% solids
- Separator 3.5 4% protein, 10% solids

Context

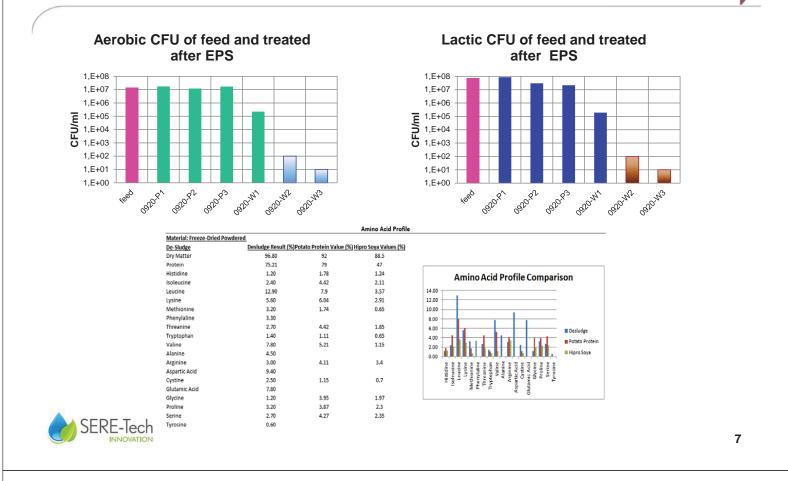
5

Spot **O**View

Dairy Industry

- Separator/Bactofuge can account for ~2000mg/I COD in effluent of a single large dairy facility
- Effective recovery and stabilisation could achieve significant WWTP circa €0.5M cost savings and create value recovery
- 60 90 tonnes per annum of dry protein recovery potential
- Therefore, potential for value recovery
- Use as animal feed ingredient or other high value protein supplementation

Treatment of Dairy, Paper and Pulp Effluents using EPS/ Narinder Bains / 04th October, 2018


Elevated Pressure Sonication - Dairy

- Patented technology
- High Pressure CO₂, low temperature 40-50°C
- Low frequency sonication
- Low energy input 5-30kJ/L
- Achieved up to 6.8 log₁₀ reduction in anaerobic and aerobic bacteria
- Enables stability and recovery of value chemicals

Elevated Pressure Sonication - Dairy

Elevated Pressure Sonication – Paper Industry

- Very high water consumption circa. 1000 m³/hr
- High COD loadings 4 6 g/l
- 50% Starch dissolved into water
 + Cellulose, Hemicellulose,
 Colloids, VFA's contribute to
 COD/TOC loads in effluent
- Biomass contributes to TS content which is difficult to settle and treat using conventional techniques

 EU paper industry seeking to reduce water intake and achieve zero discharge goals

Spot (


Spot View

- Alternative reuse, recycling and recovery techniques being investigated
- Elevated Pressure Sonication has been tested for value recovery and biocontrol concepts in the SPOTVIEW project

Elevated Pressure Sonication - Paper

- In all cases where EPS was applied suspended solids appear to have expanded with treatment with a visible improvement in water clarity
- Treated samples appear to self-flocculate with no chemical addition

Treatment of Dairy, Paper and Pulp Effluents using EPS/ Narinder Bains / 04th October, 2018

Elevated Pressure Sonication – Paper Industry

Paper and Pulp Effluent

Test	Characteristic	рН	COD mg/l	% Change in COD
0	No P, No US	7.1	1700	0
1	No pressure, low US energy	6.9	1700	0
2	No pressure, high US energy	7.4	1800	+ 5.9
3	Low pressure, low US energy	6.1	2200	+ 29
4	Low pressure, high US energy	6.7	3800	+ 124
5	High pressure, low US energy	6.0	2400	+ 41
6	High pressure, high US energy	6.9	2900	+ 70.6

 Increased COD when EPS treated, shows increased extraction of organic compounds for recovery

9

Spot

Conclusion so far

- Dairy Desludge can be stabilized effectively and higher value protein concentrate recovered
- Dairy Potential to reduce COD on WWTP significantly and achieve effluent treatment cost savings circa €0.5M for a large dairy
- Paper & Pulp EPS trials showed good effluent clarification associated with extraction of organic compounds from biomass/solids
- Paper & Pulp Good bacteria kill effect on effluent samples to control bioactivity pre- and post UF

Spot (

Spot (

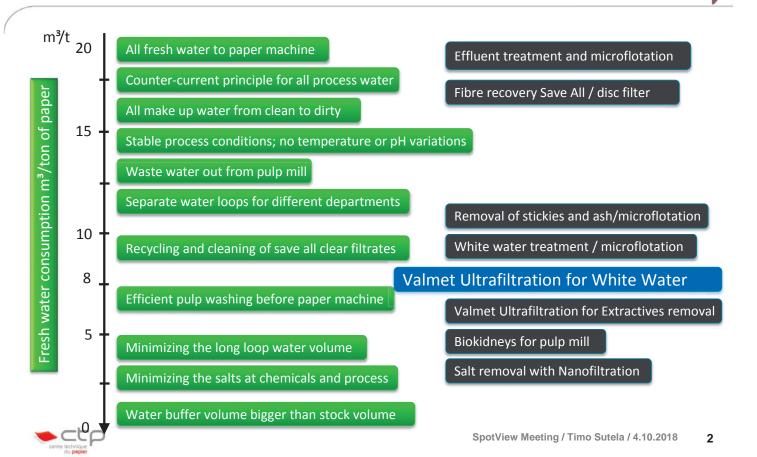
Acknowledgement

SERE-Tech

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723577

Valmet Ultrafiltration for Tissue mills

Avilés, October 4th, 2018 Timo Sutela, Pasi Nurminen


Horizon 2020 European Union Funding for Research & Innovation

Fresh Water Reduction

Spot View View Marca 222 English English

Steps to controlled reduction

Valmet Ultrafiltration T Modular process for Tissue mill white water treatment

- Valmet Ultrafiltration T process is designed to produce colloidal and bacteria free ultrapure water from Tissue mill white waters to
 - Reduce fresh water consumption
 - Improve tissue machine runnability and efficiency
- Compact and modularized process
 - Includes all needed components for fully automated operation
- Membrane Technology solution with Valmet Ultrafilter CR1010-30

Received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 723577

SpotView Meeting / Timo Sutela / 4.10.2018 3

Valmet Ultrafilter CR Technical features

Valmet Ultrafilter CR1010/30

- Membrane area
 42 m²
- Membrane diameter 1 000 mm
- Filter cassettes
- Membranes
- Motor 37 kW
- Size, ca
 1,8 × 2,1 × 1,4 m

30 pcs

60 pcs

Membrane pore size 0.02 – 0.05 μm

Spot **O**View

Valmet Ultrafiltration T Cross Rotational - Technology

- Plate & frame module
- Polymeric flat sheet membranes
- Cross flow created by rotors
- High cross flow velocity (> 10 m/s)
 - High turbulence
 - High and stable capacity
 - Low clogging of membrane
- Low pressure difference (< 1 bar)
 - No clogging of membrane
 - High membrane life time

SpotView Meeting / Timo Sutela / 4.10.2018 5

Valmet Ultrafiltration T The product

The Permeate produced with Valmet Ultrafiltration technology is:

- Free from solid substances
 Free from secondary and micro sticky
- Free from colloidal material
 50-70 % less anionic trash
- Free from turbidity
- Free from bacteria

Valmet Ultrafilter

Using permeate instead of fresh water decreases the overall water consumption in the tissue-making process and creates savings in the energy used for heating the fresh water.

A modern tissue machine consumes 5–15 m³ of water per ton of paper. With Valmet Ultrafiltration T solution the consumption is decreased by 1–2 m³.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723577